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ABSTRACT

The Monte Carlo method(MCM) is applied to analyze radiative heat transfer in nongray

gases. The nongray model employed is based on the statistical narrow band model with an

exponential-tailed inverse intensity distribution. Consideration of spectral correlation results in

some distinguishing features of the Monte Carlo fc_rmulations. Validation of the Monte Carlo

fl_rmulations has been conducted by comparing results of this method with other solutions.

Extension of a one-dimensional problem to a multi-dimensional problem requires some special

treatments in the Monte Carlo analysis. Use of different assumptions results in different sets of

Monte Carlo formulations. The nongray narrow band formulations provide the most accurate

results.
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NOMENCLATURE

Latin Symbols
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H

lw

k

L

LMn
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M

MX, MY

P

-dqrddy

_yT.q_

qw

Q

R

S t St_S II

T

U

X

Y

Greek symbols

6

0

KOJ

length of a volume element, m

height of a volume element, m

height of parallel plates, m

spectral radiative intensity, kW/(m2.sr.cm -I)

line intensity to spacing ratio, cm -1. atm -I

slab thickness, m

mean beam length, m

division numbers

number of elements for I-D problem

number of elements in x, y directions

gas pressure, arm

radiative dissipation fi_r 1-D problem, kW/m _

radiative dissipation, kW/m _

net radiative ,,,,'all flux, kW/m 2

emitted radiative energy per unit volume, kW/m 3

random number

position variables, m

absolute temperature, K

pressure path length parameter, atm.m

mole fraction

y-coordinate, m

line width to spacing ratio

half-width of an absorption line,

equivalent line spacing, cm -1

polar angle

spectral absorption coefficient

y-direction cosine=cosO

--I
cm

vl



P

'Tt,d

reflectlvity

spectral transmittance

azimuthal angle

waventlrnber, era-- !

solid angle

1

vii



LIST OF TABLES AND FIGURES

Table 3.1

Table 3.2

Fig. 3.1

Fig. 3.2

Fig. 3.3(a)

Fig. 3.3(b)

Fig. 3.3(c)

Fig. 3.3(d)

Fig. 3.4(a)

Fig. 3.4(b)

Fig. 3.4(c)

Fig. 3.4(d)

Fig. 3.4(e)

Comparison of the net radiative wall heat fluxes with nonreflecting walls

(kW/m2)

Comparison of the net radiative wall heat fluxes with reflecting walls

(kW/m2)

Planar medium between two parallel walls

Temperature and concentration profiles

Comparison of radiative dissipation for the uniform temperature profilewith

L=0.1 m

Comparison of radiative dissipation for the uniform temperature profilewilh

L= 1.Ore

Comparison of radiative dissipation fi_r the boundary layer typetemperature

pmfi le

Comparison of radiative dissipation fi_r the parabolictt20 concentration

profile

Comparison of radiative dissipation in pure tt20 for p=0.1 , L=0.5 m

Comparison of radiative dissipation in pure tt20 fi)r p=0.5 , L=0.5 m

Comparison of radiative dissipation in pure It20 for p=0.9, L=0.5 m

Comparison of radiative dissipation in pure I120 for p=0.9, L=0.1m

Comparison of radiative dissipation in pure tt20 for p=0.9, L=I.O m

VIll



Fig. 3.5(a)

Fig. 3.5(b)

Fig. 5.1

Fig. 5.2

Fig. 5.3(a)

Fig. 5.3(b)

Fig. 5.3(c)

Fig. 5.3(d)

Fig. 5.3(e)

Fig. 5.3(0

Fig. 5.4(a)

Fig. 5.4(b)

Comparison of correlated and noncorrelated results in pure I-I20 for p=O.O,

1.7-0.1 m

Comparison of correlated and noncorrelated results in pure 1t20 for p=O.5,

L---0.1 m

Schematic of two finite parallel plates and grid configuration

Schematic of a rectangular finite volume element ABCD

Radiative dissipation at middle location for the case of uniform

temperature (L/tI= 1)

Radiative dissipation at middle location fi_r the case of uniform

temperature (L/it=4)

Radiative dissipation at middle location for the case of unifi_rm

temperature (L/tI= 1O)

Radiative wall flux distribution fi_r the case of uniform temperature (L/tt=I)

Radiative wall flux distribution fi_r the case of unifi_rm temperature (L/tt=4)

Radiative wall flux distribution for the case of uniform temperature
t

(i  ,4t= 1o)

Radiative dissipation at the location (x/L=0.275) fi_r the ease of

nontmiform temperature

Radiative dissipation at the location (x/I7-0.575) for the case of

nonuniform temperature

ix



Fig. 5.4(c) Radiative dissipation at the location (x/L=0.875) for the case of

nonuniform temperature

Fig. 5.4(,t) Radiative wall flux distribution for the case of nonuniform temperature

I

X



1. INTRODUCTION

There have been extensive research underway to develop hydrogen-fueled supersonic com-

bustion ramjet (scramjet) propulsion systems for National Aero-Space Plane (NASP) at the

NASA Langley Research Center. A critical element in the design of scramjets is the detailed

understanding of the complex flowfield present in the different regions of the engine over a range

of operating conditions. Numerical modeling of the flow in various sections has proven to be a

valuable tool for gaining insight into the nature of these flows(Kumar, 1986; Drummond, 1986).

In a hypersonic propulsion system, combustion takes place at supersonic speeds to reduce

the deceleration energy loss. The proctucts of hydrogen-air combustion are gases such as water

vapor and hydroxyl radical. These species are highly radiatively absorbing and emitting. Thus,

numerical simulation must correctly handle the radiation phenomena associated with supersonic

flows.

Radiative heat transfer is modeled by a radiative transfer equation with an absorption model.

In the past three decades, a tremendous progress has been made in the field of radiative energy

transfer in gray as well as nongray gaseous systems. As a results, several useful books (Sparrow

and Cess, 1978; Siegel and Flowell, 1081) and review articles (Edwards, 1983; Chan, 1987;

[lowell, 1988) have become available fi_r engineering applications. In the sixties and early

seventies, radiative transfer analyses were limited to one-dimensional cases. Including only

one-dimensional radiation is very questionable for the most practical applications. Since the

mid seventies, efforts have been directed towards formulating efficient and accurale multi-

dimensional equations for radiative transfer. Great achievements have been made for gray

gaseous systems. Ilowever, the studies on nudti-dimensionnl nongray gaseous systems encounter

tremendous difficulties and little progress has been made so far. A survey of various methods for

mutil-dimensional radiative transfer analysis has been made by Howell (1983, 1988). Discussion

were made regarding the feasibility of incorporating the spectral integration in the techniques

using narrow band (Goody, 1964) and wide band mc×tels (Chap and Tien, 1969; Edwards and
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Morizumi, 1970). Another review (Chan, 1987) has provided details of several methods that

could possibly be applied to multi-dimensional radiative transfer in molecular participating media.

Different review articles have unanimously indicated that one of the most promising methods

to investigate the nongray participating media in multi-dimensional systems is the Monte Carlo

method (MCM).

The MCM is a probabilistic method which can exactly simulate all important physical

processes. In this method, the numerical treatment of mathematical formulation is easy and

the usual difficulties encountered in complex geometries can be circumvented easily. It is due

to these advantages that the MCM has been applied to solve many radiative transfer problems.

The earliest application of this method for radiative transfer problems was made by tlowell and

Perhnutter (1964a). Radiative problems of increasing complexity which have been investigated

by this method have appeared in the literature (Perlmutler and Howell, 1964; Howell and

Perhnutter, 1964b; Steward and Cannon, 1971; Dunn, 1983; Gupta et al., |9_3). Studies on

reducing the computational time by using this method are also available (Kobiyama el al., 1979;

Kobiyama et al., 1986). The gray gas assumption, however, is made in most of these analyses.

Like any other numerical methods, the MCM also has some disadvantages. One of them is

the large appetite for computer time, and another is the statistical fluctuation of the results. With

the rapid development of computers, these two disadvantages are becoming of less concerns and

the interests in the MCM are becoming stronger. One of the recent applications of the MCM

has been in the investigation of radiative interactions in nongray participating mediums using

a narrow band model. For example, Taniguchi et al. (1991) applied a simplified from of the

Elsasser narrow band model to investigate the problem of radiative equilibrium in a parallel

plates system. Farmer and ttowell (1992) obtained a Monte Carlo solution of radiative heat

transfer in a three-dimensional enclosure with an anisotropically scattering, spectrally dependent,

inhomogeneous medium. Modest (1992) discussed the effects of the narrow band averaging on

the surface and medium emissions. It was pointed out that the narrow band model may be

applied successfully to the MCM after verification in an isothermal and homogeneous medium.
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llowever, all thesestudieshavefailed to reflectsomefundamentalmechanismsof theMCM in

conjunction with a narrow band model, and the application of the MCM on nongray radiation

problems is still uncertain.

The objective of this study is to employ a general and accurate narrow hand model to

investigate radiative heat transfer using the MCM. The same nongray model has been applied to

investigate radiation contributions using the discrete direction method (Zhang et al., 1988) and S-

N discrete ordinates method (Kim et al., 1091a). The present investigation includes derivation of

the Monte Carlo statistical relationships, discussion of the fundamental features that are different

from other methods and demonstration of the capability of the MCM for nongray analysis. One-

dimensional problem is considered in the study first, and then the formulations are extended to

a specific multi-dimensional problem. The analytical procedure developed in this study can be

applied to systems with any irregular geometry. In the future work, the present analysis will be

extended to the problems of combined transfer processes in chemically reacting flows such as

those in scramjet propulsion systems.

For the present study, the information on radiation absorption models is given in Sec. 2.

Analysis of the MCM with a narrow band model is provided in Sec. 3. Validation of this analysis

is presented in Sec. 4. The extension of MCM formulations to a specific two-dimensional

problem is provided in Sec. 5.



2. RADIATION ABSORPTION MODEL

The study of radiative transmission in nonisothermal and inhomogeneous gaseous systems

requires a detailed knowledge of the absorption, emission and scattering characteristics of the

specific gas. Several models are available in the literature to represent the absorption emission

characteristics of molecular species. The gray gas model is the simplest model to employ in

radiative transfer analyses. In this model, the absorption coefficient is assumed to be independent

of wavenumber. In many practical applications, the radiative transfer by hot molecular gases

such as 1120 and CO2 involves vibration-rotation bands that are difficult to model by a gray gas

model due to the strong wavenumber dependent properties of the bands.

The nongray gas models account for the effect of wavenumber on absorption coefficient.

Based on the range of the wavenumber interval within which the absorption coefficient is

calculated, the nongray models can be line-by-line models, narrow band models, and wide band

models. The line-by-line models are theoretically the most precise models to treat radiative heat

transfer. But solutions of the line-by-line formulation require considerably large computational

resources. Consequently, it is not practical to apply the line-by-line models in most engineering

problems.

The narrow band models can quite accurately represent the absorption within a narrow band

interval of a vibration rotation band and they are much simper than the line-by-line models.

Four usually employed narrow band models are Elsasser, statistical, random-Elsasser and qusi-

random narrow band models. Various wide and narrow band models have been tested with the

results of line-by-line calculations in the literature (Tiwari, 1978; Soufiani et al., 1985; Soufiani

and Taine, 1987). Accurate results for tenlperature and heat flux distribution are obtained with

the statistical narrow band model which assumes the absorption lines to be randomly placed

and the intensities to obey an exponential-tailed-inverse distribution. The transmittance of a

homogeneous and isothermal column of length ! due to gas species j, averaged over [_----(A¢o/2),



w+(Aw/2)], is then given by (Malkmus, 1967)

where xj represents the mole fraction of the absorbing species j and P is total pressure; k and

/_ = 27r_'/_ are the band model parameters which account for the spectral structure of the gas.

The overbar symbol indicates that the quantity is averaged over a finite wavenumber interval

A_. Parameters I¢ and 118 generated from a line-by-line calculation have been published for

tt20 and CO2 (Ludwig et hi., 1973; ttartmann etal., 1984; Soufiani etal., 1985). The mean

half-width _, is obtained using the parameters suggested by Soufiani etal. (1985). The narrow

band width considered is usually 25 cm -I.

The wide band models are the simplest nongray models and are extensively used in radiative

heat transfer analyses (Cesset hi., 1967; Buckius, 1982). Four commonly used wide band models

are box, modified box, exponential and axial ,,vide band models. By far the most popular wide

band model is the exponential wide band model developed by Edwards (1976). Edwards and co-

workers (Edwards and Menard, 1964; Edwards and Babikinn, 1989), as well as other investigators

(Thynell, 1989), have successfiflly used this model. The exponential wide band model accounts

for discrete absorption bands and spectral correlations resulting from the high resolution structure.

ttowever, the spectral discretization used in this model is too wide and it does not take into

account the low resolution correlations between intensities and transmissivities (Soufinni and

Taine, 1987). Also, the case of partially reflecting walls cannot be correctly modelled with

this approach (Edwards, 1976). These two disadvantages are avoided when a statistical narrow

band model is used in radiative transfer calculations (Soufiani and Taine, 1987). Therefore, the

narrow band model formulation expressed by Eq. (2.1) is employed in this study to investigate

nongray radiation problems.

For a nonisothermal and inhomogeneous column, the Curtis-Godson approximation (Godson,

1953) leads to accurate resulls if pressure gradients are not too large. Basically, this approach

consists of transformation of such a column into an equivalent isothermal and homogeneous one.



For the narrow band model expressed in Eq. (2.1), effective band model parameters _'e and /_,

are introduced by averaging k and _ over the optical path U of the column as

i

v(t) = f P(v)xj(v)dy (2.2)
0

I

1/ke = U(--ll) P(Y)X'i(Y)k(y)dy
0

(2.3)

!

1 f PCy)xjCy)k(y)/_(y)dy_+= Lu(t)
0

The transmittance of this equivalent column is then calculated from Eq. (2.1).

(2.4)



3. MONTE CARLO SIMULATION USING A NARROW BAND MODEL

To investigate radiative heat transfer using the MCM and a narrow band model, a simple

problem is considered at first. Figure 3.1 shows an absorbing and emitting molecular gas between

two infinite parallel plates with the slab thickness of L. Temperature, concentration and pressure

in the medium are supposed to be known. The walls are assumed to be diffuse but not necessarily

gray. The wall temperature i,_ also known. Usually, the radiative transfer quantities of interest

are the net radiative wall flux and the radiative di._sipation inside the medium. The radiative

dissipation is nothing but the divergence of radiative heat flux with opposite sign. In order to

calculate these quantities, the medium considered is divided into (M-2) volume elements. The

grid numbers on the lower and upper walls are 1 and M, respectively. Temperature, concentration

and pressure are assumed to be constant in each volume element. The typical method for handling

radiative exchange between surface and/or volume elements is to evaluate the multiple integral

which describes the exchange by some type of numerical integration technique. This, usually,

is a good approach for simple problems. An alternate meth¢_d is used here. Radiative transfer

in the computational domain is simulated using the MCM.

The MCM uses a large number of bundles of energy to simulate the actual physical processes

of radiant emission and absorption of energy occurring in a medium. These energy bundles are

similar to photons in their behavior. The histories of these energy bundles are traced from their

point of emission to their point of absorpti¢m. What happens to each of, these bundles depends

on the emissive, scattering and absorptive behavior within the medium which is described by

a set of statistical relationships. The net radiative wall flux or the radiative dissipation in an

element is equal to the total radiative energy absorbed in this element minus its emitted radiative

energy, divided by the area or the volume of the element.

The use of a narrow band model in the MCM presents new features in the analysis of

radiative heat transfer. The statistical relationships currently in use need to be modified. The

fc_llowing Monte Carlo analyses are based on an arbitrarily chosen finite volume element. The
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statistical relationships for an energy bundle emitted from a surface element can be derived by

following the same procedure.

3.1. Monte Cnrlo Formulntion

Let us consider the Planck spectral blackbody intensity l_ that enters the ith volume element

at the point s on the lower side and intersects the upper side at the point s r as shown in Fig. 3.1.

A spherical coordinate system is eslnblished and centered at the point s. Under the condition

of local thermodynamic equilibrium, an amount of energy absorbed in a finite volume element

is equal to that emitted. Thus, the amount of energy emitted for a wavenumber range dw and

along a pencil of column s_s _ with n solid angle increment df_ is expressed as

(3.1)

Sheikh, 1988)

o o o

o o
_ 1

r_(_ -4 s')] cosOsinOdCdOdw

--, J)] cosOsinOaO lw '

where Ay i is the thickness of ith volume element. It should be noted that the sign of Ayi is

different when p varies from positive to negative.

The simulation of an energy bundle includes the determination of wavenumber and direction

of emission of this energy bundle in the finite volume element. The statistical relationships for
I

where rw(s---_s _) is the spectral trnnsmittance over the path s_s _, 0 is the polar angle between

the y axis and the direction of the column s_s _, and df'/=sin0d0d¢ where ¢ is the azimuthal

angle, The total emitted energy per unit volume is obtained by integrating Eq. (3.1) over the

wavenumber, polar, and azimt, thal nngle as (ltowell, 1068; Siegel and Howell, 1981; ltaji-



determining these parameters are readily obtained from Eq. (3.2) as

Red

w 1

27r f f Ib_[l- r_,(Ayi/lt)]l_dl_dw
0-I

Qi

(3.3)

1 O0

2_r f f Ibw[1 - T,o(Ayi/It)]ttdwdp

Rl ' = u 0 (3.4)
Oi

where Rw and Rtt are random numbers which are uniformly distributed between zero and one.

In Eqs. (3.2)-(3.4), "rw is a real spectral transmittance. Before solving these equations to obtain

w and tt from a set of given values of Rw and Rtt, the narrow band model should be applied

to approximate the real spectral transmiitance.

For the narrow band model, the absorption bands of tim gas are divided into spectral ranges

Aw wide; each is centered at w k anti characlerized by the superscript k; the band parameters

obtained are the averaged quantities over n narrow band. So, the spectral quantities in Eqs.

(3.2)-(3.4) should be transformed into the averaged quantities over a narrow band for practical

applications. Taking tile spectral average over all narrow bands, Eqs. (3.2)-(3.4) are expressed

as

R,(,d

Qi = 2rr _ /--_[1 -- r-_ek(Ayi/tt)]pdtt Atok (3.5)

k=l

(' }2,__ f I-_[1- _(,x.v,h,)I_ta,,A__
k=l -1

, (_--_ < w _<:o") (3.6)
Qi

where mw is the total number of narrow bands. The following narrow band approximation has

been used in obtaining Eqs. (3.5)-(3.7)

1 f Ib_ r_ dw

Aw _



(1/)_Ib_k Aw k rxdw

Aov _

10

= Ibm,_-_- (3.8)

This is because ll_ is essentially constant over a narrow band and may be taken out of the spectral

integral. Otherwise, the average product l_ro:_ is not equal to the product of lb_-----_and r--_-.

Equations (3.6) and (3.7) are solved for w and tt each time a set of values of Rw and RtL are

chosen. The computing time becomes too large for practical calculations since the integrands in

these equations are very complex fimctions of integration variables and the number of energy

bundles usually is very large. To circumvent this problem, interpolation and approximation

methods are employed. For example, to obtain the value of w for a given value of Rw, we first

choose different values of w and obtain the corresponding values of Rw from Eq. (3.6). Then,

a smooth curve is constructed to match these data points, and w values are easily obtained from

this curve for selected values of Rw. The procedures for determining It are similar to those for w.

Following the determination of wavenumber and direction of an energy bundle, it is essential

to find the location of absorption of the energy bunclle in the participating medium. Let us still

consider the emitted radiant energy along a pencil of column s--+s _ (Fig. 3.1). After this amount

of energy is transmitted over a column s_s ", the remaining radiant energy is given by

dQ_ = k,_[1- r_(s ---, s')]r_(s' --4 s") cos Odf_dw (3.9)

where rw(S_S ") is the spectral transmittance over the path s_s ". Taking a narrow band

average over Eqs. (3.1) and (3.9) and dividing the latter one with the first one, the statistical

relationship for determining the location of absorption can be expressed as

R_= [1- ,-_(, --, _')],-_(_'--. ,")
1 - _d(_ "--*s')

_(_' --, ,")- ,-_,(,--, _'),_C,' --' _")
1 - _d(s -+ s')

(3.1o)

where R I is a random number. The averaged product r,,,(._ -4 s')ro:(s _ --4 s n) is not equal to

the product of r_(s _ s') and T_(S' _ Sn) because the rw(s --4 s') and r_(s' -4 s t') have a
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strong wavenumber dependence due to the high resolution structure in a very small range of an

absorption band (hundreds of major absorption lines in a 25 cm -1 spectral interval), and must

be treated in a speclrally correlated way. Equation (3.10) can be simplified as

_(s' --, s")- _(s --, _") (3.] 1)
= 1 --, .¢)

If the spectral correlation between 7"w(,_ -_ _') and rw(s' _ s') is not taken into account, then

Eq. (3.10) becomes

Rt = g-dw(s' _ _") (3.12)

Equation (3.12) is the statistical relationship usually employed for determining the location of

absorption in the Monte Carlo simulation and is quite different from Eq. (3.11). For an isothermal

and homogeneous medium, tile travelling distance of an energy bundle can be obtained directly

by solving Eq. (3.11) for a given random number. But this procedure turn,_ out to be somewhat

complicated for a nonisothermal and inhomogeneous medium. It becomes necessary to try each

volume element starting from the adjacent element of the location where an energy bundle emits

until a finite volume element is found in which Eq. (3.11) can be satisfied.

3.2. Special Features of MCM b_r Nongray Analysis

The MCM is quite different from other numerical techniques for the analysis of radiative

heat transfer. Its characteristics have been discussed in detail by Siegel and Howell (1981). Use

of a nongray model in the radiative transfer analysis requires significant changes. Two special

features of incorporating the nongray model in the MCM are discussed here.

Most of the existing analyses in radiative heat transfer start with the transfer equation of

the type given by Siegel and llowell (1081). In order to apply a narrow band model, this

equation has to be spectrally averaged over a narrow band. This averaging treatment results

in two kinds of spectral correlations. One is the spectral correlation between the intensity and

the transmittance within the medium. Another is the spectral correlation between the reflected

component of the wall radiosity and the transmiltance. In order to investigate the first kind of
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spectral correlation, all the intermediate transmittanees in each finite volume element of medium

along the path the radiative energy travels must be ealeulated and stored to make a eorrelated

ealeulation. In order to investigate the seeond kind of speetral eorrelation, a series expansion

of the wall radiosity is required. Essentially, this series expansion is utilized along with a

teehnique for elosure of the series.

The simulation of radiative heat transfer in the MGM is not direetly based on the radiative

transfer equation. This results in the MCM having features different from the other methods

for nongray analysis. When the radiative energy is transmitted in the medium, the speetral

eorrelation does oeeur in the MCM, hut it oeeurs between the transmittanees of two different

segments of the same path which is different from other methods. This is the first feature with

the MCM for nongray analysis.

The MCM procedures are based on the direct simulation of the path of an energy bundle.

For the ease with reflecting walls, the mechanism of the reflections simulation in the MCM is the

same as a series expansion of the wall radio._ily, llowever, this simulation process beeomes mueh

simpler beeause of a probabilistie treatment. Also, there are no speetrally eorrelated quantities

involved. This is the seeond feature of the MCM fi_r nongray analysis. Exaet treatment of the

refleetions in the MCM in nongray gases is the same as that in gray gases and may be found

in the literature (ltowell, 1968; Siegel and ttowell, 1981).

The seeond feature of the MCM allows one to obtain results for a reflecting wall with very

little increase in the eomputation time eompared to that for a nonreflee!ing wall. But in other

methods, the eonsideration of the history of a finite number of refleetions and approximating

the remaining reflections by a elo,qure method in the radiative transfer equation eomplieates

the mathematieal formulation and increases the computer time considerably. As the geometry

eonsidered beeomes eomplieated, e×aet simulation of radiative heat transfer in the ease with

reflecting wall will be very diffieult fi_r most existing methods, while it is not a big problem for

the MCM. So, it seems that the MCM is able to retain the feature of simplicity in dealing with

the eomplieated problems while a narrow band model is employed.
!
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4. VALIDATION OF MONTE CARLO ANALYSIS

In order to validate the Monte Carlo simulation along with a narrow band model, result_ for

radiative dissipation inside the medium and the net radiative wall heat flux have been obtained

for different temperature and concentration profiles with nonreflecting and reflecting walls. In

this work, the reflectivities of two parallel diffuse walls are assumed to be identical and are

denoted by the symbol p. Three different temperature profiles are used here and these are

uniform, boundary layer type and parabolic profiles (Fig. 3.2). They are obtained from Kim et

al. (|991a)and Menart et al. (1993). For the uniform temperature profile, the gas temperature

is chosen to be 1000 K, while the walls are held at 0 K. Also shown in the figure is a parabolic

1120 concentration profile fl,r a mixture of tt20 and N2 at 1 arm, and it is also taken from the

above cited references. A uniform compositicm of pure II20 vapor at 1 atm is another H20

concentration profile used. Several cases with the selected temperature and 1120 concentration

profiles have been considered previously using the S-N discrete ordinates method by including

all important bands. The Monte Carh, solutions are compared with the available solutions for

identical conditions.

In the Monte Carlo simulation, the entire slab of the physical problem is divided into 20

sublayers for all calculations. Further subdivision of the compt, tation domain yields little changes

in the results. The computation were performed on a Sun Sparc workstation. The number of total

energy bundles for each case was chosen to be 50,000. This choice represents a compromise

between accuracy and saving of computation time. When the relative statistical errors of the

results were chosen to be less than _+3%, the probability ¢,f the results lying within these limits

was greater than 95%. The computing times ft_r the correlated and noncorrelated formulations

were essentially the same. For an isothermal and homogeneous medium, the required CPU time

was about 1-2 minutes f'¢,r each case. For nonist_thermal and inhomogeneous medium, the CPU

time was increased to 5-7 minutes, and it was nearly 10 minutes for the case with strongly

reflecting walls (p=0.9) and large optical length (L-=0.5 m).
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The situation with nonreflecting walls is considered first. Figures 3.3(a)-3.3(c) show the

comparisons between the Monte Carlo solutions and S-N discrete ordinates solutions. Four

different S-N discrete ordinates solutions are available in the literature (Kim et al., 1991a) which

employ different band models. For our comparison, we selected the solution -- S-20 nongray

narrow band solution because it employs the same narrow band model as used in this study.

Figure 3.3(a) and 3.3(b) show the radiative dissipation results obtained for the uniform

temperature and uniform pure [120 vapor distribution with the slab thickness of 0.1 m and 1.0

m, respectively. The Monte Carlo results essentially match the S-N discrete ordinates results.

Figure 3.3(c) presents the results with the boundary layer type temperature profile and for the

same concentration distribution as in Figs. 3.3(a) and 3.3(b). "]"he Monte Carlo result._ predict

the same change of gas behavior (flora a net emitter near the h_)t wall to a net absorber away

from the hot wall) as the S-N discrete ordinates results. The results for the parabolic H20

concentration distribution (with a unifc_rm temperature profile) are shown in Fig. 3.3(d). The

Monte Carlo method also predicts the interesting W type shape distribution of -c3qR/0y as in

the S-N discrete ordinates method. Here the Monte Carlo solutions appear to be a little higher

than the S-N discrete ordinates solutions, especially in the central region.

The results for the net radiative wall heat flux obtained for the cases presented in Figs.

3.3(a)-3.3(d) are given in Table 3.1. The differences of results between different solutions for

the three cases are not more than 3.5%. This shows agreement similar to that for the radiative

dissipation results.

The situation with reflecting walls is considered next. Figures 3.4(a)-3.4(e) show the

comparisons between the Monte Carlo solutions and the S-N discrete ordinates solutions for

different wall reflectivities and slab thicknesses. For these results, the parabolic type temperature

profile and the uniform composition of pure tT20 vapor at 1 arm are assumed. The S-N discrete

ordinates soluti¢_ns are based on the second-degree closure result_ (Menart et al., 1993). The

second-degree closure means that the history of two reflections is considered in the radiative

flux equation and the remaining reflections are approximated by a closure method. Based on
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the study by Kim et al. (1991b), the second-degree discrete ordinates solutions for typical cases

required about 160 minutes on the Cray-2 supercomputer. This is significantly higher than the

CPU time required for the MCM, which is not more than 10 minutes on a Sun Sparc workstation.

Table 3.1 Comparison of net radiative wall heat fluxes with nonreflecting walls (kW/m 2)

Monte Carlo S-N Discrete Ordinates

Uniform T; L=0.1 m -14.2 -14.3

Unifrom T; L=I.0 m -27.6 -28.2

Boundary layer T 280.4 277.4

Uniform T with -24.5 -25.4

concentration profile

Figures 3.4(a)-3.4(c) present the results of --Oqn/O!l for the wall reflectivities of p= 0.1,

0.5 and 0.9 respectively, , with the slab thickness of L--0.5m. Excellent agreements between

different solutions are seen in the figures. In the central region, the values of -OqR/cgy are

approaching a plateau. The Monte Carlo results appear to be slightly oscillating in this region.

The reason is that the total number of energy bundles is a finite number and the Monte Carlo

results are of statistical nature. The oscillation decreases and the results of -Oqn/ay become

smoother as the total number of energy bunctles is increased. This osci,llation is also found in

other figures. Figure 3.4(d) and 3.4(e) show the results for the same strongly reflecting walls of

p=0.9 with the slab thicknesses of L=0.1 m and L=I.0 m, respectively. Again, the Monte Carlo

solutions appear very close to the S-N discrete ordinates solutions.

Table 3.2 shows the net radiative wall heat fluxes for the cases presented in Figs. 3.4(a)-

3.4(e). The Monte Carlo results are slightly lower than the S-N discrete ordinates results. But

the differences are within 6%. There are physical justifications for such discrepancies. In

the S-N discrete ordinates method, the history of two reflections is taken into account and the
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remaining reflections are approximated as travelling in a medium without any attenuation. This

approximation overpredicLs the radiative energy absorbed on the walls. In the MCM, the history

of the reflections is simulated in an exact manner. In addition, the Monte Carlo solutions are

also subject to small statistical errors.

Table 3.2 Comparison of net radiative wall heat fluxes with reflecting walls (kW/m 2)

p=0.9

L (m)

0.5

0.5

0.1

Monte Carlo S-N Discrete

Ordinates

14.42 15.12

9.47 9.66

2.22 2.34

2.55 2.70

2.58 2.67

The spectrally correlated results are compared with the noncorrelated results in Figs. 3.5(a)

and 3.5(b). A spectral correlation has been considered in all the results presented in previous

figures. In a spectrally noncorrelated formulation, the correlation between spectrally dependent

quantities is neglected. By using Eq. (3.12), the Monte Carlo noncorrelated results can be

obtained. The temperature and t120 concentration distributions considered here are the same

as those in Figs. 3.4(a) and 3.4(b). The wall reflectivities are p=0.0 for Fig. 5(a) and p--0.5

for Fig. 3.5(b) , and the slab thickness L is 0.1 m for the two cases. The figures clearly

show that the noncorrelated results overestimate the gas emission in the central region, and

differ by about 30-35% from the correlated results. The reason for this discrepancies is in the

derivation of the statistical relationship for determining the location of absorption of an energy

bundle. The term rc,,(s _ s')r,.,(s' ---+s") in Eq. (3.10) can be treated in two different ways, that

is, ra,(s _ ,s')rw(s' --', s") = _-j(s --', s") anti r,,(8 _ s') . r_(s' -4 s"), respectively. The first

choice results in the correlated formulation given by Eq. (3.11) and the second choice result_ in

the noncorrelated formulation given by Eq. (3.12). Since the value of r,,,(s --4 s')r,,,(s' --', s") is
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greaterthanthe value of r,,(s _ s') . r,,,(._' _ s"), the Ri calculated from Eq. (3.11) is smaller

than that calculated from Eq. (3.12) for the same conditions. This means that an energy bundle

travels a shorter distance by using the correlated formulation in comparison to that by using

the noncorrelated formulation. So, it is concluded that an energy bundle is more likely to be

absorbed near the point of emission for the correlated case and near or on the walls for the

noncorrelated case. Because correlaled results anti noncorrelated results differ significantly, the

spectral correlation must be taken into account in order to predict the radiative heat transfer

accurately.
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5. INVESTIGATION OF TWO-I)IMENSIONAL RADIATION

In the previous sections, tile MCM has been applied to investigate the radiative heat transfer

in a one-dimensional problem with a nongray participating medium. When a narrow band model

is employed, the spectral correlation between the transmittances of two different segments of

the same path must be taken into account in the statistical relationship for determining the

absorption location in order to get accurate resulLs. For the nongray case with reflecting walls,

the advantages of the MCM are very clear in comparison to other methods. Comparison of the

Monte Carlo solutions with other solutions has justified the present Monte Carlo analysis.

The objective of this section is to extend tile Monte Carlo analysis to a two-dimensional

problem. Although it is well known that the MCM has a characteristics of easy extension of

problem from one-dimensional to muftl-dimensional, a lot of difficulties may still exist and some

unconventional treatments have to be applied during this extension. By considering a specific

two-dimensional problem, some major difficulties encountered in a multi-dimensional problem

will be handled in this section. A problem with any irregular geometry can be investigated in

a similar way.

Consider an absorbing and emitting molecular gas between two parallel plates of finite length

L and height I] and infinite width as shown in Fig. 5.1. The inlet and outlet of the gas are at

the section x=0 and x=L, respectively, and they are treated as pseudoblack,walls with prescribed

temperatures. Temperature, concentration and pressure in the medium are supposed to be known.

The walls are assumed to be diffltse but not necessarily gray. The wall temperature distribution

is also known. In order to calculate the net radiative wall flux and the radiative dissipation inside

the medium, the medium considered is divided into an MX×MY array of rectangular volume

elements (Fig. 5.1). Similarly, the two real walls are each divided into MX surface element%

and the inlet and outlet pesud_ walls are each divided int(_ MY surface elements. Temperature,

concentration and pressure are assumed to be constant in each element.
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The following Monte Carlo analyses are based on an arbitrarily chosen finite volume element

ABeD (Fig. 5.2) with the length and height equal to b and c, respectively. Use of different

assumptions results in three different sets of Monte Carlo formulations. They are the nongray

narrow band formulations, approximate nongray narrow hand formulations, and gray narrow

band formulations, respectively. Investigation of differences of these formulations is another

objective of this section.

5.1. Nongray Narrow Band Formulations

In this case, an energy bundle is simulated in an exact manner in terms of the narrow band

model without any approximation. Let us consider the Planck spectral blackbody intensity lhw

that enters the element ABCD at the point of s on the side of AB and intersects one of other

three sides of the element at the point of s r as shown in Fig. 5.2. It should be understood that

each side of the element is a surface. A spherical coordinate system is established and centered

at the point s. The distance between the points s and A is x*. Under the condition of local

thermodynamic equilibrium, an amount of energy absorbed in a finite volume element is equal

to that emitted. Then, the amount of energy emitted for a wavenumber range dw and a pencil

of column s_s r with a solid angle increment df't and an area increment dx" is

dQ = 1_[1 - r_(s -_ s')] cosOdf_dz*do., (5.1)

The symbols in the above equation have the same meanings as the one-dimensional problem

analyzed before. The total emitted energy calculated in terms of the iptensity entering from

the sides of AB (0<0<r) anti DC (Tr<O_2r) is obtained by integrating Eq. (5.1) over the

wavenumber, polar angle, azimuthal angle and area as

oe b x 2_"

0 0 0 0

Referring to Fig. 5.2, the distance ss t is expressed as

, { mln{c/cosO, (b-z*)/(cos_bslnO)}, -Tr/2<_b_<r/2
88 .--

mln{c/ cosO, - z °/ (cos slnO)}, r/2 < < 37r/2
1

(5.2)

(5.3)
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The value of ss%annot be calculated from just one expression because the point s' may be located

on the different sides of the element ABCD. All the possible travelling paths of the intensity in

the element ABCD should be considered to evaluate the value of Q.

Similar procedures can be applied to obtain the expression for the emitted radiative energy

calculated in terms of the intensity entering from the sides of AD and BC. Then the total emitted

radiative energy from the finite volume element ABCD consists of two terms. They represent the

emitted energy calculated in terms of the intensities entering from the sides of AB, DC and the

sides of AD, BC, respectively, and cannot be manipulated algebraically into one term. Usually,

the statistical relationships for simulating an energy bundle emitted from a w_lume element in

the MCM are developed frown the formulation of total emitted radiative energy of this volume

element. But this may complicate the analysis for a multi-dimensional problem since there exist

two or even more independent terms in the formulation of total emitted radiative energy. In

this study, the two independent terms in the present problem are treated separately, and the

Monte Carlo analysis is based on a single term. This means that the Monte Carlo analysis is

based on Eq. (5.2) if an energy bundle in the element ABCD starts from the sides of AB or

DC. Otherwise, the Monte Carlo analysis is from another term. The following Monte Carlo

formulations are developed based on Eq. (5.2), and the Monte Carlo formulations from another

term can be derived in the same way.

The simulation of an energy bundle includes the determination of wavenumber, point of

emission and direction of emission of this energy bundle in the finite volume element. The
t

statistical relationships for determining these parameters are readily obtained from Eq. (5.2) as

(Howell, 1968; Siegel and ttowell, 1981; Flnji-Sheikh, 1988)

w b lr27r

f f f f lt,_[1 - r,,,(s _ ,_')]cosOsinOd4,dOd:r*dw

R,, = o o o o (5.4)
Q

_" O0 _l" 2/1"

f f f - r,o(s s')lcosOsinOd bdOdwdz*
R_. = 0 0 0 0 (5.5)0

1





3,1

Ro =

0_b2_

f f f f Ibo,[1- ,_(s -_ s')lcosOsinOdedz'dtodO
0 0 0 0

Q
(5.6)

¢,oo b _r

f f f f Ibm,J1- T_(_--, _,)1_o_o_i.OaOd_'dtod¢
R,/, = 0 0 0 0 (5.7)Q

where R,,,, R:_., Re, R,/, are random numbers which are uniformly distributed between zero and

one. In Eqs. (5.2) and (5.4)-(5.7), rto is a real spectral transmittance. Before solving these

equations to obtain w, x', 0 and ¢ from a set of given values of R_, Rx.,Re, Re, the narrow

band model should be applied to approximate the real spectral transmittance.

Taking the spectral average over all narrow bands and using the narrow band approximation

as that in Eq. (3.8), Eqs. (5.2) and (5.4)-(5.7) are expressed as

}Q= _ s-L-r_[_- _(., -->-,')}_o_O_inO<t,bdO,t_",",<ok (5._)
k=l 0 0 0

{i /f/-f_-_[1- _(s --, s')]cosOsinOdCdOdx* Am k

k=l 0 0 , (W a-1 < tO < ton) (5.9)
R_= O -

E f/-_[i - _(s _ s')lcosOsinOdCdOdx* Ato k

k=l 0 0 0 (5.10)
R_.= Q

)E f f f/--_-_l 1 - r--_(_ _ a')leosOsinOdedx*dO mw k

k=l 0 0 0 (5.11)
Ro= Q

E f f/--f_[1 - r-_(s --* s')]cosOsinOdOdz'd¢ Ato k
k=l 0 0

(5.12)
Re'= Q

where mw is the total number of narrow bands. Similar to one-dimensional problem, in order

to solve Eqs. (5.9)-(5.12) for a set of given values of Rto, Rx., R 0 and Re, interpolation and

approximation methods have to be employed.
I
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The integrations involved in Eqs. (5.8)-(5.12) need to be evaluated numerically. First, each

integration variable should be dlscretized within its range. The wavenumber in Eqs. (5.8)-(5.12)

has been already divided into mw narrow bands. Similarly, the side length is divided into m x.

elements between 0 to b; the polar angle is divided into m 0 elements between 0 to r; the

azimuthal angle is divided into me elements between 0 to 2_r. The value in_each element of a

variable is assumed to be constant. Then, by drawing a value from each variable, a pencil of

medium column is determined and the emitted radiative energy of this column is calculated from

the integrand in Eq. (5.8). If all the combination of four values from four different variables are

taken into account, an array (mw×mx.×mg×m¢)is obtained in which the value of each array

element represents the emitted radiative energy of a medium column. The total emitted radiative

energy Q is equal to tile summation of values of all the elements in the array. The integrations

involved in Eqs. (5.9)-(5.12) are equal to the summation of values of part of elements in the

array. As a matter of fact, the variable x', 0 and ¢ only need to be discretized within the half of

their ranges because of the symmetry of transmitting of intensity in a rectangular finite volume

element. This symmetry saves the storage space and reduces the computer time considerably

in the numerical integration.

To determine the location of absorption of the energy bundle in the participating medium, let

us still consider the emitted radiant energy along a pencil of column s--_s _ (Fig. 5.1). After this

amount of energy is transmitted over a column s_s ", the remaining radiant energy is given by

(5.t3)

Taking a narrow band average over Eqs. (5.1) and (5.13) and dividing the latter one with the first

one, we obtain the same the statistical relationship for determining the location of absorption

as that for one-dimensional problem,

-' (5.14)
Rt-" 1 -_-_d(s _ s')
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5.2. Gray Narrow Band Formulations

For gray formulations, the radiative properties are assumed to be constant in a narrow band.

The correlation between various spectrally dependent quantities no longer exists. So there is

only one statistical relationship in this case which is different from the nongray narrow band.

This different relationship is the statistical relationship for determining the location of absorption

and it has the same formulation as Eq. (3.12). From the previous analysis, the Rt calculated

from the case of gray narrow band is greater than the case of nongray narrow band.

5.3. Approximate Nongray Narrow Band Formulations

In this case, the volume dV of a volume element is assumed to be very small so that energy

emitted within dV escapes before reabsorption within dV. This has been the basic assumption

employed in all the studies related to the MCM so far. In fact, this assumption is applied in

most works no matter whether or not it is really satisfied. Major advantage of this assumption

is that radiative transfer formulations can be simplified significantly. From llowell (1968) and

Siegal and Howell (1981), the total emitted radiative energy and the statistical relationships for

determining the wavenumber and emission direction of an energy bundle emitted from a finite

volume dV are given by

oo

Qdv" = 47r f _,,,Ib_dVdw (5.15)

0

f _,wI_wdw
0

R_=

f _ lb_ d_
0

(5.16)

I -- COS
Ro-

2
(5.17)
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where Kw is the spectral absorption coefficient. The location of emission of an energy bundle

is determined in such a way that all the energy bundles are assumed to pass the center point

of the element. This treatment is justified from the assumption used in the case considered.

Introducing the narrow band approximation, Eqs. (5.15) and (5.16) becomes

E
k--I

!1

4rr E (-g-dT_Ib_'Awk) dV

n_ = k--1 , (_--, < _ < _-) (5.20)
Qdv

The term _ is the mean absorption coefficient over a narrow band and is obtained as (Kim

et al., 1991a)

In_(LMB) (5.21)
LMB

where LMI3 is the mean beam length of the volume element. It is evident that Eqs. (5.17)-

(5.20) are much simpler than the corresponding formulations for the cases of nongray and gray

narrow bands.

The statistical relationship for determining the location of absorption of an energy bundle

emitted from the volume element dV should be treated in a different way from that in Howell

(1968) and Siegal and Howell (1981) in this case because of the incorporation of a narrow

band model. Equation (5.14) is the general formulation to calculate RI with consideration of the

spectral correlation. Substituting the mean transmittances with the mean absorption coefficients,

Eq. (5.14) becomes

exp( exp(
Rt --

1 - exp - f "g--jds

Since dV is very small, we have the fi_llowing approximation

1-exp - _jds _g-d_ss I

'" )f _
$

(5.22)

(5.23)



This approximation is also applied in deriving Eqs.

simplified as

(5.15)-(5.18).
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Equation (5.22) is then

(,) ( )exp - f _-d_ds - exp - f _--d_ds

" s (5.24)
RI = -g--_sst

Equation (5.24) is also quite different from the statistical relationship usually employed for

determining the location of absorption in the Monte Carlo simulation. Like the case of the gray

narrow band, the Ri calculated from Eq. (5.24) is usually greater than that calculated from Eq.

(5.14) for the same conditions because of use of the approximations given in Eqs. (5.21) and

(5.23). An alternative way to obtain Eq. (5.24) is to follow the same procedures as those in

the case of nongray narrow band for determining RI and apply the required approximation at

the very beginning of the derivation.

5.4. Result,_ and Discussions

Based on the Monte Carlo analyses described in the previous section, a computer code

is developed that is able to predict the radiative dissipation and net radiative wall flux using

a narrow band model in a nonisothermal and inhomogeneous medium. The calculations are

carried out for two different temperature distributions with a uniform composition of pure IlzO

vapor at I atm using a Sun Workstation. The narrow band calculation goes up to 4250 cm -t for

tlzO and the total number of narrow bands considered is mw= 165. For tile uniform temperature

distribution, the gas temperature is chosen Io be 1000 K, while the real and pseudo walls are

held at 0 K. The two real wall emissivities are assumed to be same and equal to 0.5. Three

cases with different aspect ratios (=L/tt) are investigated for this temperature distribution. For

the nonuniform temperature distribution, the gas temperature is assumed to be

T(z,y) = 800 + 700[1 , 2y - lt ,] x[_L (5.25)

The two real walls and the inlet pseudo wall are kept at a temperature of 800 K. The outlet of

the gas is open to a 300 K atmosphere, so the lemperature of the outlet pseudo wall is at 300 K.
I '
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The two real wall emissivities are chosen to be same and equal to 0.6. The length and height

of two parallel plates are 0.6 m and 0.3 m, respectively. This is the only one geometrical size

considered in this situation. The work from Zhang et al. (1988) has been referred to construct

the wall and geometrical conditions in the case of nonuniform temperature distribution.

In the Monte Carlo simulation, the medium is divided into 20×20 uniform finite volume

elements for all calculations. Subsequently, the number of finite surface elements on each wall

is 20. Further subdivision of the computation domain yields little changes in the resulLs. For

integrations and interpolations in the nongray and gray narrow band formulations, the divisions of

the side length, polar angle and azimuthal angle in a rectangular volume element are chosen to be

m x.--10, rag--10 and m_,b= 10 respectively within half of their ranges. The emitted radiative energy

from each of the m_o×m x'×m6×m_--165×lO×lO× 10 medium columns is then calculated and

stored. The required integrations and interpolations are implemented from the summation of

the values of radiative energy in different columns. These computations should be done for

each volume element in the case of nonuniform temperature distribution because the integrations

and interpolations values evaluated in one volume element are different from another volume

element due to the temperature differences. Obviously this work will be very time-consuming.

Similar probelm will be encounleded in other multi-dimensional problems. In this stusy, a

temperature interpolation technique has been developed to reduce the computer time. We make

the integrations and interpolations in Eqs. (5.8)-(5.12) at 15 different temperatures which are

uniformly distributed within the temperature range in the medium. The values of the required
!

integrations and interpolations in each of volume elements can be interpolated from the results at

these 15 different temperatures by using B-spline functions. Care should be taken to choose the

number of temperature interpolation points. Too small number may not result in accurate results.

The total number of energy bundles for all cases is chosen to be 500,000. This choice

represents a compromise between accuracy and saving of computation time. Numerical exper-

iments has been done for different Monte Carlo solutions and indicate that an increase in the

total number of energy bundles by a factor of 10 results in a change in the least squares fit of
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the Monte Carlo results not more than _+2%; but the computing time increases by a factor of

10. The CPU times required for the nongray (narrow band) solution and gray (narrow band)

solution are about the same. They are about 20-25 minutes for the case of uniform tempera-

ture distribution and 35-40 minutes for the case of nonuniform temperature distribution. If the

temperature interpolation technique is not applied, the CPU time mentioned previously in the

nonuniform temperature case is increased by a factor of 7-10 to get almost the same results. The

approximate nongray (narrow band) solution does not need to use a temperature interpolation

technique and takes less CPU time to complete than the nongray and gray solutions. Ftowever,

the time difference is not more than five minules in each case.

Besides the three above mentioned solutions, one-dimensional nongray (narrow band) results

are also obtained in each case for comparison. The formulations of one-dimensional problem

have been given in the section 3. In the one-dimensional nongray solution, the radiative heat

transfer is simulated in an exact manner like that for the nongray solution. But it is only dependent

on the temperature distribution at one x location, while the other three two-dimensional solutions

are dependent on the temperature distribution over the entire computational domain. Among the

four different sohntions, the nongray solution is the most accurate and is used to compare the

other solutions. Also, the Monte CarIc_ results tend to show little fluctuations around the "real"

answers. A least squares method has been applied to fit the fluctuated results in all the four

solutions obtained in this study.

The situation with uniform temperature distribution is considered first, The behaviors of four

different narrow band solutions are illuslrated in Figs. 5.3(a)-5.3(f) for three cases with different

aspect ratios. The height of the plates is assumed to be constant and equal to H=0.1 m. Different

values of aspect ratio are obtained by changing the length of the plates. Figures 5.3(a)-5.3(c)

show the disti-ibution of radiative dissipation at the middle location of the plates with aspect

ratio equal to one, four and ten, respectively. One-dimensional nongray solution is identical for

all the three cases, while the three two-dimensional solutions are different. For the case with

small aspect ratio in Fig. 5.3(a), the one-dimensional nongray sohntion is well above the nongray
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solution. The radiative energy absorbed in the medium from the one-dimensional treatment is

much higher than that from the two-dimensional treatment. Among the three two-dimensional

solutions, the approximate nongray solution falls approximately 20-25% below the nongray

solution. The gray solution falls even more, 50-60% below the nongray solution. As the aspect

ratio increases to four in Fig. 5.3(b), more radiative energy is absorbed in the medium at the

middle location. So values of radiative dissipation from nongray solution increase and approach

the one-dimensional nongray solution. The approximate nongray results and gray results also

increase in this case; but they still overpredict the emission of radiative energy. When the aspect

ratio is further increased to ten in Fig. 5.3(c), the nongray results are increased to their limiting

values which are nothing but one-dimensional nongray results. It seems that the approximate

nongray solution and gray solution also reach to their own limiting values that are about 20%

and 70% below the nongray results, respectively.

The distribution of radiative wall flux along the parallel plates for the eases presented in

Figs. 5.3(a)-5.3(c) are shown in Figs. 5.3(d)-5.3(e). The one-dimensional nongray result is a

constant value along the plates which is the same for the three cases. In Fig. 5.3(d), the length

of the plates is equal to the height. Similar to the radiative dissipation ease, the one-dimensional

nongray solution and nongray solution differ significantly. More energy is absorbed on the plates

for the one-dimensional treatment as eompared to the two-dimensional treatment. Significant

differences are also noted among the three two-dimensional solutions. The approximate nongray

solution and gray solution overestimate the energy absorbed on the walls by about 20% and 40%,

respectively, as compared to the nongray solution. In Fig. 5.3(e), the aspect ratio is increased

to four. The radiative wall flux predicted by the three two-dimensional solutions also increase.

When the aspect ratio beeomes ten in Fig. 5.3(t"), except the ranges near the inlet and outlet,

the nongray solution reaches to a plateau of uniform radiative wall flux in the central region.

The value of the plateau exactly matches the one-dimensional nongray result. The results from

the approximate nongray solution and gray solution show a trend similar to that of the nongray

solution. However, the plateau values in the central region are about 15% and 50% higher than
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the nongray solution, respectively.

From the results presented in Figs. 5.3(a)-5.3(10, it is evident that the two-dimensional effects

are dominant in the entire domain for the parallel plates with a small aspect ratio, while the one-

dimensional effects are dominant for the parallel plates with a large aspect ratio. In the inlet and

outlet regions, the two-dimensional effects are always important no matter what the aspect ratio is

chosen. Among the three two-dimensional solutions, the approximate nongray solution and gray

solution predict a lower distribution of radiative dissipation in the middle location and higher

radiative wall fluxes along the plates than the nongray solution. There are physical justifications

for these discrepancies. As indicated in the previous section, the Re I calculated from the nongray

formulation is smaller than that calculated from the approximate nongray formulation. So an

energy bundle travels a short distance and is likely to be absorbed in the region near the point

of emission. In the approximate nongray solution, however, an energy bundle travels a long

distance which may be several times larger than the height of the plates and is more likely to

be absorbed on the walls. The gray formulation predicts even longer travelling distance of an

energy bundle than the approximate nongray formulation. This is why the differences between

the gray solution and nongray solution are larger than those between the approximate nongray

solution and nongray solution.

The situation with the nonunifrom temperature distribution is considered next. The temper-

ature in the medium calculated from Eq. (5.25) is observed to increase as the distance from the

walls and the inlet increase. Figures 5.4(a)-5.4(c) show the distributions of the radiative dissipa-

tion at three different locations along the plates. In Fig. 5.4(a), the location is chosen to be near

the inlet (x/L=0.275) where temperature change is quite smooth. In this case, the travelling

distance of an energy bundle predicted from the approximate nongray formulation is about the

same as the height of the plates, and an energy bundle is more likely to be absorbed near and on

the walls. Thus, it is observed that the approximate nongray results are higher than the nongray

results in the region near the walls but lower in the central region. Similar trend is also found

for the one-dimensional nongray solution. Unlike the approximate nongray formulation, the gray
I
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formulation still predicLs a much larger travelling distance of an energy bundle than the height

of the plates. Therefore, the gray solution is much lower than the nongray solution in the entire

region. Figure 5.4(b) shows the results at the location xFL=0.575. The one-dimensional nongray

solution tends to be a little separated from the three two-dimensional solutions. The differences

among the three two-dimensional solutions are similar to the previous case. In Fig. 5.4(c), the

location is chosen to be near the outlet (x/L=0.875). The temperature change is steep and tem-

perature values in the central region are high in this case. Tile one-dimensional nongray solution

neglects the existence of the cold medium and cold walls around the location, and predicts more

energy absorbed in the medium than other solutions. This is why the one-dimensional solution

is significantly highter than the other three two-dimensional solutions. A little change is also

found for the approximate nongray solution. The range where the approximate nongray results

are lower than the nongray results has expanded to the place near the walls, it is believed that

the steep change in temperature and high temperature values contribute to this phenomena. For

the gray solution, it is still significantly below the nongray solution like the previous cases.

The distribution of radiative wall flux along the plates in the case of nonuniform temperature

profile is presented in Fig. 5.4(d). As the location changes from the inlet to the outlet, the

one-dimensional nongray results increase all the way, while the three two-dimensional results

increase at first, reach a peak value at a place near the outlet, and then decrease. The reason

for such behaviors between one-dimensional and two-dimensional treatments is obvious. The

outlet region, in this problem, is equivalent to a cold source. This cold source has a strong

effect on the radiative heat transfer in the nearby region. Two-dimensional solutions can predict

this effect. But one-dimensional solution only depends the local temperature and is not exposed

to the effect of the cold source. Among the three two-dimensional solutions, the gray results

overestimate the energy absorbed on the walls by as much as a factor of two to five compared

to the nongray results. This is compatible with the results of radiative dissipation presented in

Figs. 5.4(a)-5.4(c). Similar to the previous cases, the approximate nongray solution is observed

to be closer to the nongray solution. The maximum differences between these two solutions
1



occur in the location near the outlet and these are usually not more than 50%.
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6. CONCLUDING REMARKS

A brief review is represented on various radiation absorption models. One of the most

accurate narrow band model is chosen to investigate the radiative heat transfer using the MCM.

The spectral correlation between transmittances of two different segments of the same path in

a medium makes statistical relationship different from the conventional relationship that only

provides the noncorrelated results for nongray analysis. For the nongray case with reflecting

walls, the advantages of the MCM are very clear in comparison to other methods.

Extension of a one-dimensional problem to a multi-dimensional problem requires some

special treatments in the Monte Carlo analysis. The Monte Carlo statistical relationships should

be derived from the independent terms in the formulation of total emitted radiative energy

within a volume element. Use of different assumptions results in different sets of Monte Carlo

formulations. Comparisons among the nongray, approximate nongray and gray solutions as well

as one-dimensional nongray solution fi_r the cases with uniform and nonunifrom temperature

distributions have demonstrated that one-dimensional treatment cannot simulate the radiative heat

transfer correctly in the region where two-dimensional effects are dominant. The gray solution

usually differs from the nongray solution significantly. The differences between the approximate

nongray solution and the nongray solution are lower than those between the gray and the nongray

solutions. In some cases the approximate nongray solution may not be acceptable.
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